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GENERAL INTRODUCTION 

Details of mechanisms of intestinal calcium transport and its 

regulation by vitamin D, dietary calcium and vitamin D restriction, 

pregnancy and lactation are still not well understood. For example, several 

recent reports indicated that 1,25-dihydroxyvitamin D3 [1,25-D3] was not 

involved in ATP-dependent basolateral membrane calcium efflux (41) and 

did not enhance intestinal calcium binding protein [CaBP] and calcium 

ATPase [CaATPase] (25,134,138). These observations directly conflict 

with the classical theory that 1,25-D3 binds to specific intracellular vitamin 

D receptors [VDR], to initiate transcription and translation of various 

products (60, 94,102). Moreover, only a few reports on the regulation of 

gene expression of CaATPase by 1,25-D3 in rat and chick intestine have 

been published (5, 21, 170). No reports on the regulation of gene 

expression of CaATPase by the vitamin D2 analog, 1,25,28-D2, have been 

published. The question of whether regulation of both CaATPase and 

CaBP by 1,25-D3 and 1,25,28-D2 were limiting factors in intestinal 

calcium transport was evaluated in the present study. 

The question of whether dietary calcium is a regulator of gene 
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expression of calcium transporting factors is still a controversial subject 

which apparently needs further studies. Wasserman et al. (162) 

demonstrated restriction of dietary calcium upregulated intestinal 

CaATPase mRNA in chicks, directly contradictory to a report by Favus et 

al. (41) that ATP-dependent calcium uptake by isolated intestinal 

basolateral membrane vesicles was diminished when the vesicles were 

derived from rats fed calcium-deficient diet. Earlier reports indicated that 

dietary calcium restriction could induce CaBP mRNA expression (6, 7, 42, 

97, 105,113, 133), but recent papers demonstrated calcium restriction did 

not enhance CaBP mRNA expression (55, 136). Therefore, it is of great 

importance to evaluate whether the adaptation to calcium deficiencies 

involves inducing gene expression of intestinal CaATPase and CaBP. 

The active transport of calcium by the intestinal tract is stimulated 

when large amounts of calcium are required during such physiological 

states as pregnancy and lactation (10, 47, 84, 140). Krisinger et al. (74) 

indicated that lactation increased intestinal CaBP mRNA expression. No 

reports have been published on the effects of pregnancy and lactation on 

intestinal CaATPase mRNA expression. Therefore, it is very important to 

determine which components of the intestinal active transport system are 
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activated. 

This project was designed to investigate and compare the effects of 

1,25-D3 and 1,25,28-D2 on mRNA expression of CaATPase and CaBP-9K 

in intestinal tissue, to determine whether adaptation to calcium deficiencies 

can induce gene expression of intestinal CaATPase and CaBP, and to study 

which components of intestinal active transport system are activated during 

late pregnancy and early lactation. 

Dissertation Organization 

This dissertation contains a general introduction which includes a 

literature review, three manuscripts and general discussion. The 

references cited in the general introduction are listed at the end of the 

chapter; references cited in each manuscript follow the manuscript. 

Figures and tables follow references [in the appendix]. The three 

manuscripts were written in the style of Infection and Immunity. The 

project was planned and executed, and the manuscripts written, primarily 

by the PhD candidate, Yingting Zhu, with the advice of the major 

professor. Dr. Jesse P. Goff and other conunittee members. 
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Literature Review 

The mechanisms of intestinal calcium transport under physiological 

and pharmacological situations have been extensively studied in recent years. 

A transcellular and a paracellular pathway have been suggested for calcium 

transport in the intestine (17). The transcellular movement is dominant in 

the small intestine, whereas paracellular transport can occur anywhere 

throughout the intestine (107). 

Intestinal calcium transport has the following characteristics: 

1. When dietary calcium is low, active transport accounts for most of 

the calcium absorbed. This transcellular movement involves the diffusional 

entry of calcium into the intestinal mucosa cells across the brush border 

membrane, the diffusional translocation of calcium to the basolateral 

membrane and active extrusion of calcium by primary and secondary active 

calcium pump mechanisms. 

2. Paracellular calcium transport is passive and down its concentration 

gradient. When the calcium concentration in the lumen of the intestine is 

high, the paracellular calcium transfer across the tight junction between 

enterocytes is predominant (37, 105,161). 
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3. Calcium enclosed in membrane-bound vesicles can also be 

transported transcellularly (100). 

The entry of calcium into cells can occur by simple diffusion across 

the membrane driven by the electrochemical gradient for Ca2+, through 

voltage dependent or receptor-operated channels coupled to second 

messengers, or through the Ca2+/Na+ exchanger (2, 160). 

Within cytosol, free calcium is closely regulated by the rate of entry 

and exit of calcium across the plasma membrane. The storage of calcium in 

the form of calcium binding proteins or in the intracellular organelles plays 

an important role in keeping intracellular ionized calcium levels low. 

Because the free calcium level in cytosol is substantially lower than that of 

the extracellular milieu, the final resetting of intracellular calcium must 

involve the extrusion of calcium out of cells through CaATPase and 

Na+/Ca2+ exchangers (112). Compared to CaATPase, the Na+/Ca2+ 

exchanger makes a relatively small contribution to calcium transport. 

The Na+/Ca2+ exchanger may be driven by Na+/K+-ATPase (99). 

It is well known that 1,25-dihydroxyvitamin D3 [1,25-D3] is a 

primary regulator of mineral homeostasis in intestine, bone and kidney (34). 

This includes the induction of calcium binding proteins, basolateral 
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membrane CaATPase and alkaline phosphatase, an increase of calmodulin, 

and changes in membrane lipid composition (11, 51, 114, 167). The overall 

effect of vitamin D is to increase calcium absorption from the intestinal 

tract, to elevate calcium resorption from bones and to enhance the retention 

of calcium from the kidney. Parathyroid hormone stimulates calcium 

absoiption by increasing renal enzyme 25-hydroxyvitamin D3-I-hydroxylase 

(77). Estrogens may also enhance calcium absorption by indirectly 

increasing 1,25-D3 in postmenopausal osteoporosis, pregnancy and lactation 

(45, 62, 73, 85). Other factors may also affect intestinal calcium 

homeostasis independent of vitamin D. For example, Halloran and DeLuca 

(82) reported that pregnancy and lactation increased intestinal calcium 

absoiption even in vitamin D-deficient rats. Calcium must be released from 

the dietary components prior to its absorption, and transported across the 

intestinal enterocytes in a free ionized state (123). Gastric acid may enhance 

calcium solubilization from the diet, thus enhancing dietary calcium 

absorption (86). Exceptionally high dietary fibers may impair calcium 

absorption (117). 

Vitamin D3 is a steroid hormone. The metabolism and mechanism of 

action are similar to other steroid hormones. This vitamin can be derived 
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from the diet or synthesized from 7-dehydrocholesterol in the skin exposed 

to ultraviolet rays from the sun. Under ultraviolet light, the B-ring is 

opened to form previtamin D3, which undergoes thermal equilibration to 

form vitamin D3 (77). Vitamin D3 and its metabolites circulate in the blood 

primarily bound to and in equilibrium with the vitamin D-binding globulin 

(154). The main fimction of the vitamin D-binding globulin is to protect and 

bind vitamin D, facilitate its solubility in the blood and act as a storage-of 

vitamin D, increasing the half life in the body. In the mammalian liver, the 

vitamin is converted to an inactive precursor, 25-hydroxyvitamin D3 [25-

D3], by 25-hydroxylase, a cytochrome P-450-like enzyme. The 

hydroxylation occurs in mitochondria and the microsomal fraction, 

requiring NADPH, O2 and magnesium. In avian species, the intestine and 

kidney are also able to convert vitamin D3 to 25-D3 though this is probably 

of minor consequence (142). The rate of hydroxylation is limited by 25-D3 

feedback inhibition. In circulation 25-D3 has a half life of about 2 to 3 

weeks and can be stored in the liver. When required by the body, 25-D3 is 

converted to the active form, 1,25-D3, by the 1-hydroxylase in the renal 

tubular mitochondria of most mammalian and avian species (77). The 

conversion of 25-D3 to 1,25-D3 requires parathyroid hormone [PTH]. PTH 
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stimulation of 1-hydroxylase is mediated by cAMP, thus enhancing 1,25-D3 

production and intestinal calcium absorption (64, 77). PTH fails to increase 

intestinal calcium transport in vitamin D-deficient rats and humans (8, 46). 

It is clear that the stimulation of intestinal calcium transport by PTH is 

indirect, since it takes hours to develop. This is consistent with the time 

required for activation of the renal 1-hydroxylase to synthesize 1,25-D3 and 

for its effects in the intestine (169). In the absence of PTH, little 1,25-D3 

can be formed and therefore, PTH is an important regulator of vitamin D. 

Conversely 1,25-D3 feedback regulates the parathyroid gland and suppresses 

PTH secretion. The activity of renal 1-hydroxylase can be downregulated by 

increased plasma calcium and 1,25-dihydroxyvitamin D3. Calcium itself has 

a slight inhibitory effect on conversion of 25-D3 to 1,25-D3. Calcium also 

inhibits the secretion of PTH, therefore preventing the conversion of 25-D3 

to 1,25-D3. During pregnancy, the placenta plays a significant role in 

converting 25-D3 to 1,25-D3 (52, 132, 135, 164-166). Alternatively 25-

D3 can be converted by 24-hydroxylase to 24,25-dihydroxyvitamin D3 

[24,25-D3] and other inactive metabolites when calcium and phosphate 

requirements are met. Metabolism of 1,25-D3 occurs by side chain 

oxidation to form an inert 23-carbon acid, calcitroic acid, in liver and 
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intestine or hydroxylation to less active 1,24,25-D3, 1,25,26-D3, 23-oxo-

1,25-D3, 23-0X0-1,26,26-D3 or l,25-D3-23,26 lactone in target tissues such 

as intestine, kidney and cartilage (77). The metabolites are excreted in bile 

and can be reabsorbed in the small intestine, characteristic of an 

enterohepatic circulation. 

1,25-D3 targets its own intracellular vitamin D receptors [VDR], 

which belong to nuclear transcriptional factors of the steroid-thyroid 

receptor gene family (61, 111). The vitamin D receptor consists of a DNA 

binding domam at the amino terminus portion of the protein, a hinge region 

and a steroid binding domain at the carboxy terminus (28). The DNA 

binding domain contains several zinc fingers which are believed to interact 

directly with corresponding DNA. The steroid binding domain is the ligand 

binding domain. The receptor was found in cytosol and nucleus. A high-

affinity, low capacity receptor for 1,25-D3 with a sedimentation coefficient 

of 3.2 S to 3.5 S has been identified from cytosolic homogenates of intestine 

in chicks, rats, human and other species, with highest affinity for 1,25-D3 

and a thousand-fold lower affinity for 25-D3 and other metabolites (18, 59, 

109, 147). Two subspecies of 1,25-D3 receptors of 58 kDa and 60 kDa for 

avian species and two of 52 kDa and 55 kDa for mammalian species have 
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been characterized (30, 110). These were confirmed by in vitro translation 

of 1,25-D3 receptor mRNA (87). The 1,25-D3 receptors are distributed in 

many tissues such as intestine, kidney, bone, brain, breast, cartilage, 

pancreas, parathyroid, pituitary, testis, thymus, thyroid and skin tissues. No 

VDR has been found in neural cells or skeletal muscle (28). The cDNA of 

VDR for rat, chick and human have been cloned (90), making it possible to 

study gene regulation of VDR. 

The action of 1,25-D3 on the VDR is similar to other steroid 

hormones on their receptors. 1,25-D3 can passively enter its target cells, 

bind with cytosolic unoccupied receptors to be ferried into the nucleus or 

diffuse into the nucleus and directly binds to nuclear unoccupied receptors. 

This binding evokes conformational changes that increase receptor affinity 

to specific vitamin D response elements [VDREs] located in the promoter 

region of vitamin D-dependent genes (58, 103, 148). Interaction between 

ligand-receptor complex and VDREs modulates transcription of mRNA 

biology of the cell and thus mediate the vitamin D response. VDREs have 

been identified for the calbindin-9K, rat osteocalcin, mouse osteopontin and 

human osteocalcin genes (28). 

It is very clear that vitamin D exerts its effects on a wide range of 
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issues. Similar to other steroids, the vitamin regulates cellular functions by 

changing gene transcription, mRNA production and stability and protein 

synthesis (154). VDR is a substrate for protein kinase A and other protein 

kinases (28). The phosphorylation of VDR by protein kinase A or other 

protein kinases is required for its activation and transcriptional activity, 

because the phosphorylation of VDR correlates with its ability to activate 

transcription. Interestingly, the phosphorylation was found to occur only at 

serine residues (28). The reason for the phosphorylation at these particular 

sites is unknown. VDR enhances transcellular calcium transport in the 

intestine and kidney, and stimulates bone calcium resorption (35,75, 89, 

102, 116). The hormone-receptcr complex, with other transcriptional 

factors, may increase transcription activities of RNA polymerase II (77). 

Despite the efforts of research scientists for several decades, not all the 

mechanisms of transport nor the controlling factors involving the calcium 

transport process have been found (4, 102). 

The stimulation of calcium uptake in several ceU types by 1,25-D3 has 

been reported. This response can be blocked by cycloheximide and/or 

actinomycin D, providing direct evidence of a transcription related effect 

(3, 70, 168). The effects of 1,25-D3 on calcium uptake among different cell 
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types also differ in magnitude and in time course (3, 149, 168). 

1,25-D3 can also elicit a nongenomic rapid response. The response 

includes transcaltachia and opening of voltage-gated channels. Intracellular 

calcium, cAMP, cGMP and protein kinase C may be involved in these 

processes (29, 31, 32, 163). Nemere and Norman (100) demonstrated that 

1,25-D3 induced a rapid increase in calcium transport in a vascularly 

perfused duodenal preparation from normal chicks. deBoland and Norman 

(33) believe that the response is the result of activation of basolateral calcium 

channels mediated by protein kinase A [PKA] and protein kinase C [PKC]. 

Although the vitamin can activate non-genomic inositol phospholipid 

mechanism to initiate rapid tissue responsiveness, research scientists have 

been making more efforts to illustrate the genomic regulatory mechanisms 

initiated by vitamin D. 

The vitamin D dependency of the nonsaturable components [passive 

transport] of calcium absorption is still controversial. Wasserman et al. 

(163) and Dostal et al. (37) indicated both saturable and nonsaturable 

processes are enhanced by vitamin D. However, not all scientists agree 

(163). 

The vitamin D receptor undergoes autoregulation (27, 81, 104). The 
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action of 1,25-D3 could cause transient hypercalcemia, thus suppressing 

PTH secretion. The decreased PTH levels can in turn diminish the synthesis 

of 1,25-D3 (77). Conflicting results have been reported on whether vitamin 

D increases vitamin D receptor mRNA (40,68,91,131). Since injecting 

rats with 1,25-D3 increases VDR concentration, if VDR mRNA does not 

increase, this would imply a change in VDR probably at the post-

transcriptional level, rather than the transcriptional level. 

Although analogs and metabolites of vitamin D have been tested for 

their calcitropic activity, there are few reports of the effects of these 

compounds on gene expression (155). It was reported that a dose as high as 

800 ng of 1,25,28-trihydroxyvitamin D2 [1,25,28-D2] had no effects on rat 

intestinal calcium transport, but a dose as low as 250 ng upregulated 

intestinal CaBP mRNA (155). Whether the analogs of 1,25-D3, such as 

1,25,28-D2, regulate intestinal CaATPase mRNA has not been reported. No 

changes in plasma calcium have been observed in vitamin D-deficient rats 

injected with 7 ug of 1,25,28-02 per day for three months (Horst and 

Reinhardt, impublished). 

Calcium binding protein is the most extensively studied vitamin D-

dependent gene product. In mammals, CaBP-9K has a molecular size of 
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CaBP-28K has a molecular size of 28 kDa, is primarily found in the 

mammalian kidney, brain, pancreas and avian intestine(26). These proteins 

can be found in calcium-transporting tissues such as intestine, kidney, bones 

and some non-calcium transporting tissues such as brain and pancreas (38, 

69,76,137,141,156). Some of these l,25-D3-dependent calcium binding 

proteins are believed to stimulate intestinal calcium transport (54, 63, 97, 

120). 1,25-D3 markedly increases the vitamin D-dependent CaBPs and their 

mRNA in manmials, chick intestine, kidney and skin (54, 63, 77,102, 108, 

125). However, some observations are inconsistent with the theory of direct 

involvement of CaBP in calcium translocation. For example, a recent report 

indicated that in vitamin D-repleted rats, duodenal calcium transport was 

enhanced by a single injection of calcitriol, whereas CaBP-9K remained 

unchanged (25). Interestingly, some 1,25-D3 non-responsive organs such as 

heart and lung have significant levels of CaBPs and their mRNA (152, 153). 

No obligatory relationships have been found between 1,25-D3 effects and 

CaBP induction (152). Multiple factors such as calcium, phosphate, 

glucocorticoids, sex steroids and age are believed to participate in CaBP 

regulation (1, 20, 26, 54, 63, 90,102,143). For example, no active calcium 
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transport is reported in the intestine of newborn rats (39, 106), with 

undetectable levels of CaBP (106,144). Even large dose of 1,25-D3 cannot 

induce CaBP in newborn rats, but can induce both calcium transport and 

CaBP in older rats (13, 144). This is probably due to lack of receptors for 

1,25-D3 in the newborn rats (57) or possibly due to lack of response from 

undeveloped kidneys. Both the active transport of calcium and calcium 

binding protein levels reach a peak at about 30 days of age in rats, and then 

gradually decrease (106). A previous report has suggested that intestinal 

CaBP-9K mRNA was upregulated only in lactation and not in pregnancy 

(74). Bruns et al. (19) suggested that active transport in the duodenum 

increased during lactation. The enhanced calcium transport cannot be 

entirely explained by the increase in 1,25-D3 concentration, because Halloran 

and DeLuca (56) found significantly increased calcium transport ratio in 

vitamin D-deficient lactating rats that lacked detectable levels of circulating 

1,25-D3. a close relationship between 1,25-D3, intestinal CaBP and calcium 

transport has been observed in which the induction of CaBP coincides with 

increased calcium transport and this is induced by vitamin D, but not calcium 

(158, 159). The important functions of CaBPs include 1,25-D3-induced 

calcium transport and buffering of the intracellular calcium pool (15, 16, 
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63). Intestinal vitamin D-dependent calcium binding protein [CaBP-9K] was 

also reported to stimulate vesicular calcium transport (151). The structural 

analysis of CaBPs showed that CaBP-28K contains six highly conserved EF-

hand domains and binds 4 calcium per molecule, whereas CaBP-9K binds 2 

calcium per molecule and contains only 2 EF-hand domains (77, 80). The 

structures were initially described by Hunziker (69) as "loop-helix-loop 

structures that bind calcium to various oxygen-containing residues within the 

loop region". CaBPs may activate and bind to CaATPase (43, 44, 71, 96, 

119,151,157). However, some observations were inconsistent with the 

theory of direct involvement of vitamin D in calcium translocation (36, 49). 

Therefore, it is necessary to reevaluate the transcriptional regulation of 

CaBP-9K by 1,25-D3. 

Most of the initial work on the characterization, isolation, purification 

and reconstition of the plasma membrane calcium pump has been performed 

on the enzyme present in human red blood cells (128). Later, the enzyme 

was found in the plasma membrane of all other types of cells and was 

proposed as a ubiquitous enzyme (22). The CaATPase is a calcium pump 

which actually transports calcium out of the cytosol in order to maintain 

the concentration gradient of calcium across plasma membrane. The 
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typical CaATPase of the plasma membrane belongs to the P-type ATPase. 

A characteristic property of these enzymes is the formation of a covalently 

phosphorylated, obligatory intermediate; hence, the name P-type ATPase 

arises from the transfer of a phosphate of ATP to a specific aspartate residue 

at the catalytic site of the peptide (128). Recently a vitamin D-dependent 

plasma membrane calcium ATPase [PMCAl] gene has been cloned (126, 

145), making it possible to study calcium homeostasis more thoroughly. 

Schatzmann (22,124) first observed Ca2+-pump activity of the plasma 

membrane of red blood cells, and later Carafoli (22) reported that all 

eukaryotic cells studied have this enzymatic activity. Several authors 

proposed that plasma membrane CaATPase has 2 ATP-binding domains with 

different ATP affinity (97, 127). Although the mechanism is not clear, the 

higher affinity domain is suggested as the catalytic site; the lower one as a 

regulator (124). PMCA has a molecular weight of 130-140 kDa and 

transports one calcium per ATP. The calcium transport cycle is triggered 

by the ATP-dependent phosphorylation of an aspartyl residue, and the 

activity is augmented by the ATP-dependent phosphorylation of serine and 

threonine residues catalyzed by protein kinase A and C (163). At least four 

genes coding for plasma membrane CaATPases [PMCAl, PMCA2, PMCA3 
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isofonns of PMCA and their mRNA have been identified (53, 66, 126). 

PMCA4 was also discovered in human cells (130). The isoform variability 

of PMCAs appears to be generated by alternative splicing of single gene 

primary transcripts (53, 126, 128, 129). The reasons for the diversity of the 

enzyme are still a matter under investigation. Strehler (128) reported that 

highly conserved sequences are likely to represent domains essential for the 

basic catalytic and transport function and may also reflect specific constraints 

imposed on structural elements of the enzyme. In contrast, highly divergent 

sequences probably specify isoform-specific regulatory and functional 

specifications of the enzyme that are adapted to the physiological needs of the 

tissue in which the corresponding enzyme is expressed (128). PMCAl 

was found to be ubiquitous, whereas other isoforms were expressed in a 

tissue-dependent manner (53). In the duodenum, PMCAl is predominant 

and regulated by vitamin D (5, 21, 170). The other isoforms of CaATPase 

have not been reported to be regulated by vitamin D. In the intestine 1,25-

D3 enhances calcium transport, in part, by stimulating epithelial cell PMCAl 

mRNA and CaATPase activity (48, 75, 79, 87, 89, 91,170). An increase of 

CaATPase activity by 1,25-D3 has also been reported in cartilage cells (83) 
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and vascular smooth muscle cells (72) but not in circulating mononuclear 

cells (93). There seems to be a correlation between the cellular location and 

magnitude of activation of CaATPase, the sites and induction of calcium 

transport in intestine and kidney (54, 63). In rats, the calcium ATPase 

activity parallels the distribution of calcium absorption activity, with the 

highest activity in duodenum. This activity is reduced in vitamin D 

deficiency (48, 150). Calmodulin stimulates CaATPase to form a 

phosphorylated intermediate (146). This converts the enzyme into a high 

calcium affinity state in which the affinity for calcium increases 30-fold and 

the affinity for ATP increases 100-fold (121, 123). Phosphorylated 

metabolites of phosphatidylinositol have been found to be activators of 

CaATPase and phosphorylation by the cAMP-dependent protein kinase could 

also activate CaATPase (23). Phorbol esters and diacylglycerol are 

activators of calcium extrusion from intact cells (78,118). A rat placental 

CaATPase mRNA was shown to be upregulated during late pregnancy and 

early lactation (50). However, little is known of changes in rat intestinal 

CaATPase mRNA expression during late pregnancy and early lactation. The 

rate of calcium absorption in the aging rat decreases. This is partially due to 

decreased mRNA and protein synthesis, decreased activity of CaATPase and 
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CaBP, thus decreased ATP-dependent calcium uptake by basolateral 

membrane of enterocytes (5). 

It has been demonstrated that 1,25-D3 regulates PMCAl in rat and 

chick intestine (5, 21,170). However, several recent biochemical studies 

indicated that 1,25-D3 did not enhance the synthesis of intestinal PMCAl 

(134,138), and did not enhance ATP-dependent basolateral membrane 

calcium efflux (41). Therefore, it is important to re-evaluate gene 

regulation of CaATPase and CaBP by 1,25-D3. 

Calcium or phosphorus deficiencies have been reported to induce 

CaATPase gene expression and also to enhance calcium pump activity (21, 

162). This contradicted a report by Favus et al. (41) which indicated that 

ATP-dependent calcium uptake by isolated intestinal basolateral membrane 

vesicles was diminished when the vesicles were derived from rats fed a 

calcium-deficient diet. Whether calcium restriction or calcium itself induces 

upregulation of CaATPase and CaBP-9K mRNA is still a controversial 

subject, which apparentiy needs further studies. For example, the expression 

of CaBP-9K droppped after 24 hours in a calcium-free medium witii 

1 mM EGTA and an increase of media calcium concentration to 1.2 mM 

induced a 6- to 10-fold increase of CaBP-9K mRNA which can be blocked 
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by actinomycin D in duodenal cell culture (12). The increase of duodenal 

calcium transport in chicks by 1,25-D3 was found to be dependent on the 

presence of media calcium, since it was abolished by prior addition of EGTA 

and was restored upon addition of calcium (31). The reduced dietary 

calcium was reported to increase intestinal CaBP mRNA, but at the same 

time to diminish VDR mRNA despite increased circulating 1,25-D3 (93). 

No difference in the steady state of intestinal CaBP mRNA levels was found 

between rats fed low or normal calcium diet (136). In vitamin D-deficient 

status, dietary calcium manipulation did not affect either intestinal CaBP or 

its mRNA in chicks, but a single injection of 1,25-D3-induced equivalent 

duodenal CaBP and corresponding mRNA (55). However, earlier reports 

suggested that the adaptation to calcium-deficient diet was associated 

with an increased CaBP and its mRNA (6, 7, 42, 97, 105, 113, 133). 

In summary, whether transcriptional regulation of both CaATPase and 

CaBP are limiting factors in intestinal calcium transport and whether the 

adaptation to calcium and/or vitamin D deficiencies affects gene expression 

of intestinal CaATPase and CaBP, and which components of active transport 

system are activated during late pregnancy and early lactation, are still not 

well understood. The present investigation attempted to answer these 
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questions. 
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REGULATION OF RAT INTESTINAL 
CaATPase AND CaBP mRNA BY 1,25-

DIHYDROXYVITAMIN D3 AND 1,25,28-
TRIHYDROXYVITAMIN D2 

A paper to be submitted to the J. of Bone and Miner. Res. 

Yingting Zhu, Jesse P. Goff, Timothy A. Reinhardt and Ronald L. Horst 

Abstract 

1,25-dihydroxyvitamin D3 is a primary regulator of intestinal active 

calcium transport. The purpose of this study was to determine the changes 

in intestinal vitamin D-dependent plasma membrane calcium ATPase 1 

[PMCAl] and calcium binding protein-9K [CaBP-9K] mRNA induced by a 

single injection of 1,25-dihydroxyvitamin D3 or an analog of 1,25-

dihydroxyvitamin D3 that is considered non-hypercalcemic, 1,25,28-

trihydroxyvitamin D2, in vitamin D-deficient rats. The results of Northern 

blotting of duodenal tissues indicated that a single injection of 20 ng of 

1,25-dihydroxyvitamin D3 per rat doubled intestinal PMCAl at 4, 8, and 

12 hours after injection, and CaBP-9K mRNA was increased at 8, 12, 

and 24 hours after injection. No increase in PMCAl and CaBP-9K mRNA 
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was observed in duodenum of rats receiving an injection of 1 ug of 

1,25,28-trihydroxyvitamin D2, which also had no effect on plasma calcium 

concentration. However, the mRNA of PMCAl and CaBP-9K could be 

increased by a larger dose of 1,25,28-trihydroxyvitamin D2 [20 jig], which 

was accompanied by an increase in plasma calcium. These data suggest that 

upregulation of PMCAl and CaBP-9K mRNA may be critical to active 

calcium transport in the intestine. 

Introduction 

Active calcium transport in the intestine involves three steps: 1. 

calcium diffusion into brush border membrane of the enterocyte down its 

concentration gradient; 2. translocation of free or bound calcium to the 

basolateral membrane; and 3. active extrusion of calcium across basolateral 

membrane against a concentration gradient (3, 31). Inside cells, calcium 

binding protein serves as an intracellular calcium "carrier" (31). At 

the basolateral membrane, calcium ATPase [CaATPase] pumps calcium into 

the extracellular fluid against a concentration gradient. 

The active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 

[1,25-D3] is a primary regulator of calcium and phosphorus transport in 
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the intestine. As with other steroid hormones, 1,25-D3 binds to specific 

intracellular receptors, i.e., vitamin D receptors [VDR], to initiate 

transcription and translation of various gene products (14, 15, 23, 24). 

Two gene products thought to be involved in calcium transport are 

CaATPase and CaBP (11, 17-22, 24, 35). However, some observations are 

inconsistent with the theory of direct involvement of vitamin D in calcium 

translocation. For example, a recent report indicated that, in vitamin D-

repleted rats, duodenal calcium transport was enhanced by a single 

injection of calcitriol, whereas CaBP-9K stayed essentially unchanged (5). 

This conflicts with reports of studies that increased calcium transport 

coincided with increased CaBP (6, 8, 29, 30). It has been demonstrated 

that 1,25-D3 upregulates PMCAl mRNA in rat and chick intestine (1,4, 

35), but recent reports reveal that 1,25-D3 does not enhance the synthesis 

of intestinal PMCA (27, 28), and did not affect ATP-dependent basolateral 

membrane calcium efflux (10). Therefore, it is important to re-evaluate 

the transcriptional regulation of PMCAl and CaBP-9K by 1,25-D3. 

Although analogs and metabolites of vitamin D have been tested for 

their calcitropic activity, few reports have documented the effects of these 

compounds on gene expression (34). It was reported that doses as high as 
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800 ng of 1,25,28-trihydroxyvitamin D2 [1,25,28-D2] did not affect rat 

intestinal calcium transport, but doses as little as 250 ng of 1,25,28-D2 

upregulated intestinal CaBP mRNA (34). No changes in plasma calcium 

have been found in vitamin D-deficient rats injected with 7 ug of 1,25,28-

D2 per day for three months (Horst and Reinhardt, unpublished). These 

data suggest that upregulation of CaBP was not the only limiting factor in 

intestinal calcium transport in these experiments. In this study, we 

determined whether upregulation of both CaATPase and CaBP-9K were 

limiting factors in intestinal calcium transport by comparing the effects of 

1,25-D3 and 1,25,28-D2 [at doses that did and did not cause an increase in 

plasma calcium] on mRNA expression of calcium ATPase and CaBP-9K in 

intestinal tissue of rats. 

Materials and Methods 

Animals: Three week-old male Holtzman Sprague-Dawley 

weaning rats were fed a synthetic calcium deficient [-Ca], vitamin D 

deficient [-D] diet [ 0.002% calcium, 0.41 % phosphate] (Tekland, 

Madison, WI) for three weeks to induce vitamin D deficiency and 

hypocalcemia. Treatment groups consisted of 4-5 rats. 
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In trial 1, rats were injected i. p. with 20 ng of 1,25-D3 or 20 ug of 

1,25,28-D2 at 4, 8,12 and 24 h prior to sacrifice. 

In trial 2, rats were injected i. p. with 20 ng of 1,25-D3 or 1 ug of 

1,25,28-D2 at 4, 8, 12, 16, 24 and 36 hours prior to sacrifice. Control rats 

received no injection. Rats were killed by inhalation of CO2-O2 [50:50] 

followed by exsanguination. Blood samples were collected into heparinized 

tubes. The proximal 15 cm of duodenum mucosa was collected from each 

rat and frozen for later mRNA analysis. 

Northem blotting: Plasma CaATPase and CaBP-9K mRNA 

levels were determined by Northem blotting. Total RNA was isolated by 

TRIzol and chloroform, precipitated and washed by isopropanol and 

ethanol (GIBCO, BRL, Gaithersburg, MD). PolyA-containing RNA was 

selected via oligo dT cellulose affinity chromatography (2). RNA was 

fractionated on 1.2% formaldehyde agarose gel and transferred to nylon 

membranes (MSI Micro Separations Inc., Westboro, MA). The RNA on 

the membranes was cross-linked by Stratalinker 1800 (Stratagene, La Jolla, 

CA). A 3.4 kb cDNA from rat brain plasma membrane calcium ATPase 

[PMCAl], kindly supplied by Dr Gary Shull, University of Cincinnati, OH, 

was used to hybridize the membranes for analysis of CaATPase mRNA. 
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The cDNA for CaBP-9K mRNA assay was the gift of Dr. M. Elizabeth 

Brims, University of Virginia Medical School, Charlottesville, VA. 

Membranes were prehybridized at 42® C for 4-6 hours in a 

prehybridization buffer containing 50% formamide, 5X Denhardt's 

reagent, 0.1% sodium dodecyl sulfate [SDS] and 100 ug/ml denatured fish 

sperm DNA. Fresh prehybridization buffer and 250 ug tRNA was used for 

the overnight membrane hybridization with 5 x 106 cpm 32p.iabeled 

cDNA probe/ml prehybridization buffer. The membranes were washed 

twice in 2X SSPE/0.1% SDS buffer [SSPE is NaCl, NaP2P04, EDTA 

mixture], twice in 0.1% SSPE/0.1% SDS, each for ten minutes. 

Quantitative analysis of mRNA was done by Scanalytics AMBIS imaging 

systems (Division of CSPI, San Diego, CA). A 2.1 kb chick P-actin cDNA 

probe was obtamed by digestion of pBR322 with Hind HI (7) and used as a 

control for estimation of mRNA integrity and RNA sample loading 

difference among various preparations. 

Plasma calcium concentrations were determined by atomic 

absorption spectrophotometry (Perkin-Elmer Corp., Norwalk, CT). 

Analysis of variance was used to determine if differences existed 

among CaATPase, CaBP-9K mRNA levels and plasma calcium 
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concentrations at each time point. When ANOVA suggested differences 

existed, Dunnett multiple comparisons were used to test the significance 

between mRNA levels at time 0 with all other time points. 

Results 

Intestinal PMCAl mRNA concentration increased 1.89-, 1.94- and 

1.77-fold at 4, 8, 12 hours after injection of 20 ng 1,25-D3 [p< 0.01 at 4 

and 8 hours and p<0.05 at 12 hours respectively] (Figure 1, 3 and Table 1) 

when compared with time 0. PMCAl mRNA concentration increased 2.1-

fold at 8 hours after treatment with 20 ug of 1,25,28-D2 [p<0.01] (Figure 

2, 3 and Table 1). A significant increase of CaBP mRNA was also found at 

8, 12 and 24 hours after injection of 20 ng of 1,25-D3 (Figure 4, 6 and 

Table 2 ) and at 4, 8,12 and 24 hours after injection of 20 ug of 1,25,28-

D2 (Figure 5, 6 and Table 2). However, injection of 1 ug of 1,25,28-D2 

failed to increase either PMCAl or CaBP-9K mRNA levels (Figure 7 and 

8). 

Interestingly, significantly higher plasma calcium concentrations 

were observed at 4, 8 and 12 hours after injection of 20 ug of 1,25,28-D2 

(Figure 9, Table 3). No significant increase of plasma calcium occurred 
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after injection of 20 ng of 1,25-D3 at any time point when compared to 

time 0 (Figure 10, Table 3). 

Discussion 

Active calcium transport across the intestine involves calcium entry 

across the brush border of enterocytes, transport of the calcium across the 

cell mediated by CaBP and extrusion across the basolateral membranes of 

the intestinal epithelial cells by basolateral membrane CaATPase (33). In 

the intestine, 1,25-D3 enhances calcium transport, in part, by stimulating 

vitamin D-dependent CaBPs mRNA expression and protein synthesis (13, 

16,18, 24-26), and enhancing epithelial cell CaATPase mRNA expression, 

protein synthesis and activity (11, 17, 19-22, 32, 35). 

Our data indicate that administration of 1,25-D3 to vitamin D 

deficient rats upregulate intestinal PMCAl and CaBP-9K mRNA. The 

upregulation of PMCAl mRNA by 1,25-D3 peaked at 4 and 8 hours after 

injection and remained high at 12 hours. Also, 1,25-D3 induced more 

prolonged induction of PMCAl mRNA than did 1,25,28-D2. Compared to 

that of PMCAl mRNA expression, the response of CaBP-9K mRNA to 

1,25-D3 peaked at 8 and 12 hours after injection, which is in agreement 
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with earlier reports (1, 4, 6, 8, 35). 

A report from Wang et al. (34) demonstrated that 12.5 ng of 

1,25,28-D2 did not have any effects on intestinal calcium absorption, 

intestinal CaBP-9K mRNA or CaBP-9K protein. Treatment with 250, 500 

or 800 ng 1,25,28-D2 resulted in significant induction of CaBP mRNA but 

still failed to increase intestinal calcium absorption. To the best of our 

knowledge, no reports on the induction of CaATPase mRNA by 1,25,28-

D2 have been documented. Our results from a single injection of 1,25,28-

D2 into vitamin D-deficient rats indicated that no induction of intestinal 

CaATPase and CaBP-9K mRNA occurred when 1 ug of 1,25,28-D2 was 

used, but induction of both CaATPase mRNA and CaBP-9K was obvious 

after injection of 20 ug of 1,25,28-D2 and this was accompanied by higher 

plasma calcium levels. The rapid transcriptional responses are probably 

due to the binding of hormone-receptor complexes to, and the cellular 

responses from the responsive genes of vitamin D. The low affinity [0.8% 

of that of 1,25-D3] of 1,25,28-02 to vitamin D receptors probably 

contributes, at least in part, to the experimental results in which large doses 

of the analog induced multiple cellular responses to elevate blood calcium 

concentrations. The rapid transcriptional response of both CaATPase and 
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CaBP-9K indicate that 1,25-D3 is a primary regulator of calcium transport 

system in the intestine (9). 
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Figure 2. Tntesrinal CaAlPase mRNA expression after 1,25,28-02 injection 
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Hgure 3. Northern blot of intestmal CaATPase mRNA 

1. Comrol 
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3. 4 hours after 20 ug of 1 ,̂28-D2 injection 

4. 8 hours after 20 ng of 1,2S-D3 injection 

5. 8 hours after 20 ug of 1,25,28-D2 injection 
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7.12 hours after 20 ug of IJ2S^'D2 injection 

8.24 hours after 20 ng of 1,2S-D3 injection 

9. 24 hours after 20 ug of 1,25,28-D2 injection 
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Figure 6. Nonfaem blot of intrsnnai CaBP mRNA 

I. Control 

2.4 hours after 20 ng of 1,25-D3 injection 

3.4 hours after 20 ug of 1 ,̂28-02 injection 

4. 8 hours after 20 ng of 1,25-D3 injection 

5.8 hours after 20 ug of 1,25,28-02 injection 

6.12 hours after 20 ng of 1,25-03 injection 

7.12 hours after 20 ug of 1,25,28-02 injection 

8.24 hours after 20 ng of 1,25-03 injection 

9.24 hours after 20 ug of 1,25,28-02 injection 
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Hguie 7. Nortfaem blot of intesnnai CaATPase mRNA 

I. Control 

2.4 hours after 20 ng of l^-Ds injection 

3.4 hours after 1 ug of 1,25«28-D2 injection 

4.8 hours after 20 ng of 1,25-D3 injection 

5.8 hours after 1 ug of 1 ,̂28-D2 injection 

6.12 hours after 20 ng of 1,25-03 injection 

7.12 hours after 1 ug of 1,25,28-02 injection 

8.16 hours after 20 ng of 1,25-03 injection 

9.16 hours after 1 ug of 1,25,28-02 injection 

10.24 hours after 20 ng of 1,25-03 injection 

II.24 hours after 1 ug of 1,25,28-02 injection 

12.36 hours after 20 ng of 1,25-03 injection 

13.36 hours after 1 ug of 1,25,28-02 injection 
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Figure 8. Nortiiem blot of intestinai CaBP mRNA 

I. Control 

2.4 hours after 20 ng of 1,25-03 injection 

3. 4 hours after 1 ug of 1,25,28-D2 injection 

4. 8 hours after 20 ng of 1,25-03 injection 

5. 8 hours after 1 ug of 1,25,28-02 injection 

6.12 hours after 20 ng of 1,25-03 injection 

7.12 hours after 1 ug of 1,25,28-02 injection 

8.16 hours after 20 ng of 1,25-03 injection 

9.16 hours after 1 ug of 1,25,28-02 injection 

10. 24 hours after 20 ng of 1,25-03 injection 

II.24 hours after 1 ug of 1,25,28-02 injection 

12.36 hours after 20 ng of 1,25-03 injection 

13.36 hours after 1 ug of 1,25,28-02 injection 
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Figure 9. Plasma calcium concentration after 1»25-D3 injection 
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Figure 10. Plasma calcium concentration after 1,25^8-02 injection 
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Table 1. Intestinal CaATPase mRNA [relative value] 

Hours after injection 1, 25-D3 treatment 1,25,28-D2 treatment 

Mean SD Mean SD 

0 1.00 0 1.00 0 

4 1.89** 0.48 1.73* 0.39 

8 1.94** 0.17 2.11** 0.59 

12 1.77* 0.16 1.36 0.16 

24 1.12 0.54 1.20 0.22 

* p<0.05 compared to control group 

** p<0.01 compared to control group 

Each group contains 4 rat samples. 
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Table 2. Intestinal CaBP mRNA [relative value] 

Hours after injection 1, 25-D3 treatment 1,25,28-D2 treatment 

Mean SD Mean SD 

0 1.00 0 1.00 0 

4 1.07 0.08 1.61** 0.09 

8 2.36** 0.22 1.81** 0.12 

12 1.74** 0.10 2.37** 0.18 

24 1.72** 0.16 2.07** 0.13 

* p<0.05 compared to control group 

** p<0.01 compared to control group 

Each group contains 4 rat samples. 



www.manaraa.com

68 

Table 3. Plasma calcium concentration [mg/dl] 

Hours after injection 1, 25-D3 treatment 1,25,28-D2 treatment 

Mean SD Mean SD 

0 3.48 0.10 3.48 0.10 

4 3.69 0.27 4.34** 0.23 

08 3.95 0.35 4.87** 0.30 

12 4.18 0.53 4.51** 0.62 

24 4.05 0.71 3.86 0.12 

* p<0.05 compared to control group 

** p<0.01 compared to control group 

Each group contains 4 rat samples. 
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EFFECT OF DIETARY CALCIUM AND VITAMIN 
D RESTRICTION ON RAT INTESTINAL 

CALCIUM ATPase AND CALCIUM BINDING 
PROTEIN mRNA EXPRESSION 

A paper to be submitted to the J. of Bone and Miner. Res. 

Yingting Zhu, Jesse P. Goff, Timothy A. Reinhardt and Ronald L. Horst 

Abstract 

Vitamin D deficiency prevents the active transport of calcium across 

the intestine. Modulation of calcium pump and calcium binding protein 

gene expression by dietary vitamin D and calcium restriction is still not 

well understood. In this study, the effects of dietary calcium and/or 

vitamin D-deficiency on intestinal plasma membrane calcium ATPase 

[PMCAl] and calcium binding protein [CaBP-9K] mRNA expression in rats 

was examined. The results indicate both intestinal PMCAl and CaBP-9K 

mRNA are downregulated in rats fed diets containing no vitamin D. 

However, dietary calcium restriction alone did not increase CaATPase or 

CaBP-9K mRNA. This study demonstrates that dietary calcium itself is 

probably not a major regulator in mRNA expression of calcium 
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transporting factors such as PMCAl and CaBP-9K when physiological 

doses of vitamin D are supplied in diet. 

Introduction 

Dietary calcium absorption in the intestine can be transcellular or 

paracellular (6). The transcellular movement is dominant in the small 

intestine (27). In transcellular movement, the entry of calcium into cells 

can occur by simple diffusion across the plasma membrane and is 

dependent on the electrochemical gradient of calcium through calcium 

channels or exchangers (1, 38). After entry into the epithelial cell, calcium 

binding protein transports calcium to the basolateral membrane where 

CaATPase pumps calcium out of the cell against its concentration gradient 

into the extracellular fluids (39). 

It is well known that 1,25-dihydroxyvitamin D3 [I25-D3] is a 

primary regulator of intestinal calcium absorption (24, 27, 36). The 

vitamin stimulates calcium transport by classic hormone-receptor-mediated 

processes (10, 24). 1,25-D3 markedly enhances CaATPase mRNA 

concentration and activity and elevates CaBPs and their mRNA (14, 15, 17-

22, 26, 30, 41). 
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Whether calcium restriction induces upregulation of CaATPase and 

CaBP is controversial. Favus et al. (12) reported that the intestinal calcium 

transport in rats adapted to a calcium-deHcient diet was decreased (12). 

Brehier (5) indicated that calcium induced a 6- to 10-fold increase of 

CaBP-9K mRNA, which could be blocked by actinomycin D in duodenal 

organ culture. deBoland and Norman (9) demonstrated that stimulation of 

duodenal calcium transport in chicks by 1,25-D3 was dependent on the 

presence of calcium in the media, since transport was abolished by prior 

addition of EGTA and was restored upon addition of calcium. Meyer et 

al. (23) reported that reduced dietary calcium increased intestinal CaBP 

mRNA, but at the same time diminished vitamin D receptor [VDR] mRNA 

despite increased circulating 1,25-D3. Theofan et al. (37) found that there 

was no difference in steady state intestinal CaBP mRNA levels between rats 

fed low or normal calcium diet. Hall and Norman (16) indicated that, in 

vitamin D deficient rats, dietary calcium manipulation did not affect 

intestinal CaBP or its mRNA in chicks; however, a single injection of 1,25-

D3 induced both duodenal CaBP and CaBP mRNA. Some earlier reports 

suggested that the adaptation to a calcium-deficient diet was associated with 

increased CaBPs and CaBP mRNA (3, 4, 13, 25, 29, 31, 34). Moreover, 
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Wassennan et al. (39, 40) found that mineral deficiencies increased the 

plasma membrane CaATPase of chick intestine. Cai et al. (7) claimed that 

adaptation to dietary calcium deficiencies increased intestinal CaATPase 

gene expression. These discrepancies suggest that it is important to 

evaluate whether the adaptation to calcium deficiencies can induce gene 

expression of intestinal calcium transporting factors such as CaATPase and 

CaBP. 

Materials and Methods 

Animals: In trial 1, three-week old Holtzman Sprague-Dawley 

weaning rats were placed on four different synthetic diets, i.e., +Ca, +D 

diet [1% calcium, 5 lU vitamin D/g] (Tekland, Madison, WI); 2. -Ca, -D 

diet [0.002 % calcium, 0 lU vitamin D/g]; 3. -D diet [0.5% calcium, 0 lU 

vitamin D/g]; 4. -Ca diet [0.002% calcium, 5 lU vitamin D/g] for three 

weeks to induce vitamin D- and/or calcium-deficient state. In trial 2, the 

rats were fed a normal diet or a -Ca diet for 1 week, 2 weeks or 3 weeks. 

Rats were killed by inhalation of CO2-O2 [50:50] followed by 

exsanguination. Blood samples were collected into heparinized tubes. The 

proximal 15 cm of duodenal mucosa was collected from each rat and 
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frozen for later mRNA analysis. 

Northern blotting: Intestinal CaATPase, CaBP and VDR mRNA 

levels were determined by Northem blotting. Total RNA was isolated by 

TRIzol (GIBCO, BRL, Gaithersburg, MD) and chloroform, precipitated 

and washed by isopropanol and ethanol. PolyA-containing RNA was 

selected by oligo dT cellulose affinity chromatography (2). RNA was 

fractionated on 1.2% formaldehyde agarose gel and transferred to nylon 

membranes (MSI Micro Separations Inc., Westboro, MA). The RNA was 

cross-linked by Stratalinker 1800 (Stratagene, La Jolla, CA). A 3.4 kb 

cDNA from rat brain plasma membrane CaATPase [PMCAl], kindly 

supplied by Dr. Gary Shull, University of Cincinnati, OH, was used to 

hybridize the membranes for analysis of CaATPase mRNA. The cDNA 

for CaBP-9K mRNA assay was a gift of Dr. M. Elizabeth Bruns, 

University of Virginia Medical School, Charlottesville, VA. 

Membranes were prehybridized at 42® C for 4-6 hours in a 

prehybridization buffer containing 50% formamide, 5X Denhardt's 

reagent, 0.1% sodium dodecyl sulfate [SDS] and 100 ug/ml denatured fish 

sperm DNA. Fresh prehybridization buffer and 250 ug tRNA was used for 

the ovemight membrane hybridization with 5 x 10^ cpm 32p-iabeled 
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cDNA probe/ml prehybridization buffer. The membranes were washed 

twice in 2X SSPE/0.1% SDS buffer [SSPE is NaCl, NaH2P04, EDTA 

mixture], twice in O.IX SSPE/0.1% SDS, each for 10 minutes. 

Quantitative analysis of mRNA was done by Electronic Autoradiography 

(PACKARD, Meriden, CT). A 2.1 kb chick p-actin cDNA probe was 

obtained by digestion of pBR322 with Hind HI (8) and used as a control for 

estimation of mRNA integrity and RNA sample loading difference among 

various preparations. 

Plasma 1,25-D3 determination: The method of Reinhardt et al (32) 

was modified to determine 1,25-D3 concentration in plasma. The plasma 

1,25-D3 was chromatographed on C18/0H low hydrocarbon columns 

(Varian, Harbor City, CA), and the concentration was determined by 

radio-receptor assay. Recovery of [3H]i^25-D3 through the purification 

steps for each sample allowed correction for extraction efficiency. 

Plasma calcium concentrations were determined by atomic 

absorption spectrophotometry (Perkin-Elmer Corp., Norwalk, CT). 

Analysis of variance was used to determine if differences among 

CaATPase, CaBP, VDR mRNA and plasma constituents as a result of 

different dietary treatment. When ANOVA suggested differences existed, 
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Dunnett multiple comparisons test was used to test the significance between 

each dietary treatment. 

Results 

In trial 1, intestinal CaATPase and CaBP mRNA decreased 

significantly in the duodenum of rats fed -D diets, regardless of dietary 

calcium (Figure 1, 2, 3, 4, Table 1 and 2). Intestinal CaATPase and CaBP-

9K mRNA levels were unaffected by dietary calcium treatment in vitamin 

D-replete rats (Figure 1, 2, 3, 4, Table 1 and 2). In trial 2, intestinal 

calcium ATPase mRNA was unaffected in rats after 1, 2 and 3 weeks of 

dietary calcium restriction (Figure 5). CaBP mRNA did not increase after 

1, 2, 3 weeks of calcium restriction (Figure 6). No increase of either 

CaATPase or CaBP mRNA was observed, despite the significantly higher 

level of plasma 1,25-D3 in rats fed -Ca diet. Plasma 1,25-D3 

concentrations in all rats fed -D diet with 0% calcium or 1% calcium 

were low (Figure 7 and Table 3). Plasma calcium levels in vitamin D-

deficient rats were lower than those in vitamin D-replete rats, regardless of 

dietary calcium. Plasma calcium levels in rats fed -Ca diet were 

significantly lower than those in rats fed 1% calcium diet, but higher than 
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those in rats fed vitamin D-deficient diets (Figure 8 and Table 4). 

Discussion 

Our results clearly demonstrate that vitamin D deficiency with or 

without calcium deficiency induced similar downregulation of both 

intestinal CaATPase and CaBP mRNA, indicatmg that vitamin D, not 

calcium, is a major regulator of active calcium transporting factors (11, 

24, 27, 34, 36). Dietary calcium itself did not seem to play a major role in 

gene transcription of CaATPase and CaBP, but the published papers on this 

topic are contradictory (3-5, 7, 9, 12, 13, 16, 23, 25, 29, 31, 35, 37, 40). 

Recently, Meyer et al (7) and Cai et al (23) reported that restriction of 

dietary calcium could induce upregulation of CaBP and CaATPase mRNA. 

However, our experiments failed to demonstrate upregulation of CaATPase 

or CaBP mRNA, implying that restriction of calcium may not induce 

adaptive upregulation of gene transcription of calcium transporting factors. 

This is in agreement with recent reports in which negative results of 

calcium deficiencies on the gene expression of CaATPase and CaBP have 

been reported (5, 12, 16, 37). The significantly higher plasma 1,25-D3 in 

rats fed -Ca diet failed to upregulate vitamin D dependent CaATPase and 
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CaBP-9K mRNA. Whether the hypocalcemia counteracts the action of 

increased 1,25-D3 is unknown (9, 33). Higher levels of plasma calcium in 

rats fed -Ca diet, compared to that in rats fed -D diet, also suggests vitamin 

D, not calcium, is a primary regulator of calcium homeostasis (24, 27, 36). 

The mechanism by which intestinal calcium transport is increased under 

conditions of low dietary calcium concentration remains questionable and 

needs further studies. 
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Appendix with mean data tables 
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Figure 1. Intestinal CaATPase mRNA expression in rats fed different diets 
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Ihtesrinai CaATPase mRNA 
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Hgure 2. Northem blot of Intestinal CaATPase mRNA 

1. -i-Ca-t'O diet treatment 

2. -Ca-D diet treatment 

3. -iCa-D diet treatmem 

4. -Ca-f-0 diet treatment 
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Intesrinai CaBP mRNA 
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Figure 4. Northern blot of Tntestinal CaBP mRNA 

1. +Ca+D diet treatment 

2. -Ca-O diet treatment 

3. -^Ca-D diet treatment 

4. -Ca-f-D diet treatment 
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Intestinal CaATPase mRNA 

|3-actin 
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Figure 5. Northern blot of Ihtestmal CaATPase mRNA 

1. diet treatment, 1 week 

2. -Ca-kO diet treatment, 1 week 

3. •fCa'4'0 diet treatment, 2 weeks 

4. -Ca+D diet treatment, 2 weeks 

5. -iCa-fO diet tteattient, 3 weeks 

6. -Ca+D diet treatment, 3 weeks 
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Intesdnai CaBP mRNA 

1 2 3 4 5 6 

Figure 6. Northern blot of Intestinal CaBP mRNA 

1. +Ca+D diet treatment, 1 week 

2. -Ca-hD diet treatment, 1 week 

3. +Ca-fO diet treatment, 2 weeks 

4. -Ca+D diet treatment, 2 weeks 

5. +Ca-t-D diet treatment, 3 weeks 

6. -Ca-HD diet treatment, 3 weeks 
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+Ca+D -Ca-D +Ca-D -Ca+D 

Figure 7. Plasma 1,25-D3 concentration in rats fed di£ferent diets 
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+Ca+D -Ca-D +Ca-D -Ca+D 

Figure 8. Plasma caH"*" conceatradon in rats fed different diets 
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Table 1. Intestmal CaATPase mRNA [relative value] 

Dietary treatment Mean SD 

+Ca+D 1.00 0 

-Ca-D 0.50** 0.17 

+Ca-D 0.59** 0.19 

-Ca+D 0.84 0.13 

* p<0.05 compared to control group 

** p<0.01 compared to control group 

Each group contains 4 samples. 
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Table 2. Intestiiial CaBP mRNA [relative value] 

Dietary treatment Mean SD 

+Ca+D 1.00 0 

-Ca-D 0.34** 0.26 

+Ca-D 0.20** 0.07 

-Ca+D 1.00 0.44 

* p<0.05 compared to control group 

** p<0.01 compared to control group 

Each group contains 4 samples. 
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Table 3. Plasma 1,25-03 concentration [pg/ml] 

Dietary treatment Mean SO 

+Ca+D 80.8 11.5 

-Ca-D 15.6** 9.80 

+Ca-D 7.80** 3.90 

-Ca+D 622.4** 40.9 

* p<0.05 compared to control group 

** p<0.01 compared to control group 

Each group contains 4 rat samples. 
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Table 4. Plasma calcium concentration [mg/dl] 

Dietary treatment Mean SD 

+Ca+D 8.30 0.30 

-Ca-D 3.80** 0.20 

+Ca-D 4.40** 0.30 

-Ca+D 6.10** 0.30 

* p<0.05 compared to control group 

** p<0.01 compared to control group 

Each group contains 4 rat samples. 
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PREGNANCY AND LACTATION INCREASE 
VITAMIN D-DEPENDENT INTESTINAL 

MEMBRANE CALCIUM ATPase AND CALCIUM 
BINDING PROTEIN mRNA EXPRESSION 

A paper to be submitted to the J. of Bone and Miner. Res. 

Yingting Zhu, Jesse P. Goff, Timothy A. Reinhardt and Ronald L. Horst 

Abstract 

The calcium demands of pregnancy and lactation are known to 

upregulate intestinal calcium absorption. Intestinal epithelial cells contain 

calcium ATPases and calcium binding proteins, which are believed to play 

important roles in intestinal calcium transport. However, the possible role 

for these two proteins in the upregulation of intestinal calcium absorption 

observed in pregnancy and lactation is unknown. In this study, intestinal 

plasma membrane calcium ATPase [PMCAl], calcium binding protein 

[CaBP-9K] and vitamin D receptor [VDR] mRNA levels were determined 

by Northern blotting analysis at different stages of pregnancy and early 

lactation in rats. Intestinal calcium ATPase and calcium binding protein 

mRNA levels did not differ significantly among non-pregnant rats and rats 
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pregnant for 7 or 14 days. However, at 21 days gestation, both calcium 

ATPase and calcium binding protein mRNA levels increased 2- to 3-fold. 

Calcium ATPase and calcium binding protein mRNA remained elevated at 

7 days of lactation. Plasma 1,25-dihydroxyvitamin D3 [1,25-D3] 

concentration exhibited a similar pattern, rising markedly at 21 days 

gestation and remaining elevated in lactation. Interestingly, VDR mRNA 

levels did not change during the entire experiment. But intestinal VDR 

content increased 2-fold in late pregnancy and lactation. These data suggest 

that the adaptation to higher requirement for calcium in late pregnancy and 

early lactation stimulates transcription of calcium absorption factors and 

the effects of gestation and lactation on VDR are probably post 

transcriptional. 

Introduction 

Intestinal calcium transport across the rat intestine can be 

transcellular or paracellular (6). The transcellular pathway is believed to 

function primarily in the small intestine. In contrast, the paracellular 

pathway can occur anywhere in the intestine (44), but functions only when 

calcium can passively diffuse down a concentration gradient from the 
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lumen to the blood. Transcellular calcium transport is an active process 

and is described as occurring in three steps: 1. calcium diffusion across the 

brush border membrane of the enterocyte; 2. translocation of calcium from 

the brush border to the basolateral membrane; and 3. active extrusion of 

calcium across the basolateral membrane against a concentration gradient 

(8, 60). 

The entry of calcium into the ceU can occur by simple diffusion 

across the plasma membrane down its electrochemical gradient since 

lumenal calcium concentration is generally greater than intracellular 

calcium concentration. In addition, calcium may enter through voltage 

dependent or receptor operated chaimels coupled to second messengers, or 

through a Ca2+/Na+ exchanger (7). Once inside the cell, calcium moves to 

the basolateral membrane, either as free calcium ions, within vesicles, or 

bound to CaBP-9K (60). The concept of calbindin-9K as an intracellular 

calcium "carrier" is widely accepted. Intracellular calcium movement may 

be affected by other mobile organelles (37), but this transport is probably 

of relatively little importance. At the basolateral membrane, calcium 

ATPase plays a major role in extrusion of calcium (20). A Na+/Ca2+ 

exchanger also is present but contributes comparatively little to calcium 
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extrusion (36). 

The active metabolite of vitamin D, 1,25-D3, has long been known to 

be the principal regulator of transcellular calcium absorption processes (3, 

38, 52). It acts directly on the intestinal mucosal cells by a classical steroid 

hormone receptor-mediated process (13, 34) to induce the transcription 

and translation of proteins such as calcium binding protein (2, 3, 17, 33, 

35, 39, 44, 52, 55, 61), CaATPase (15, 18,42, 53, 57, 58) and vitamin D 

receptor (22, 47). 

The active transport of calcium by the intestinal tract is increased 

when larger amounts of calcium are required during such physiological 

states as pregnancy and lactation (5,19, 32, 56). The purpose of this study 

was to determine which components of the active calcium transport system 

are activated during pregnancy and early lactation. 

Materials and methods 

Animals: Three-month-old female non-pregnant, 7, 14, or 21 days 

pregnant and 7 days lactating rats fed rat lab diet [1% Ca, 0.74% P] 

(#5012, PMI Feeds, Inc., St. Louis, MO) were used to perform the 

experiment. Female rats were bred at weekly intervals so that all rats could 
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be euthanized on the same day. All pregnant rats had at least 10 fetuses and 

all lactation rats were nursing at least 10 pups. Rats were euthanized by 

inhalation of 50:50 C02:02 followed by decapitation. Blood samples were 

collected into heparinized tubes. 

In one set of rats, the duodenum was removed for determination of 

VDR protein concentration by saturation binding analysis. In a second set 

of animals the proximal 15 cm of duodenum mucosa from each rat was 

obtained and frozen in liquid nitrogen for later mRNA analysis. 

Northern blotting: Plasma membrane CaATPase, calcium binding 

protein and vitamin D receptor mRNA levels were determined by 

Northem blotting. Total RNA was isolated by TRIzol and chloroform, 

precipitated and washed by isopropanol and ethanol (GIBCO, BRL, 

Gaithersburg, MD). PolyA selection for detecting VDR mRNA was 

accomplished by streptavidin paramagnetic particles purchased from 

Promega, Madison, WI. RNA was fractionated on 1.2% formaldehyde 

agarose gel and transferred to nylon membranes (MSI Micro Separations 

Inc., Westboro, MA). The RNA on the membranes was cross-linked by 

UV Stratalinker 1800 (Stratagene, La Jolla, CA). A 3.4 kb cDNA from rat 

brain plasma membrane CaATPase [PMCAl], kindly supplied by Dr. Gary 
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Shull, University of Cincinnati, OH, was used to hybridize the membranes 

for analysis of CaATPase mRNA. The cDNA for CaBP-9K mRNA assay 

was the gift of Dr. M. Elizabeth Bruns, University of Virginia Medical 

School, Charlottesville, VA. The VDR cDNA was provided by Dr. Wes 

Pike, Ligand Pharmaceutical, La Jolla, CA. 

Membranes were prehybridized at 420 c for 4-6 hours in a 

prehybridization buffer containing 50% formamide, 5X Denhardt's 

reagent, 0.1% sodium dodecyl sulfate [SDS] and 100 ug/ml denatured fish 

sperm DNA. Fresh prehybridization buffer and 250 ug tRNA was used for 

the ovemight membrane hybridization with 5 x 10^ cpm 32p.iabeled 

cDNA probe/ml prehybridization buffer. The membranes were washed 

twice in 2 X SSPE/0.1% SDS buffer [SSPE is NaCl, NaH2P04, EDTA 

mixture], twice in 0.1 X SSPE/0.1% SDS, each for ten minutes. 

Quantitative analysis of mRNA was done by Electronic Autoradiography 

(PACKARD, Meriden, CT). A 2.1 kb chick P-actin cDNA probe was 

obtained by digestion of pBR322 with Hind HI (12) and used as a control 

for estimation of mRNA integrity and RNA sample loading difference 

among various preparations. 

Unoccupied VDR assay: Intestinal tissues were collected and mucosa 
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was harvested. Mucosa was washed 3 times in buffer [10 mM Tris, 1.5 mM 

ethylenediaminotetraacetic acid, 2 mM dithiothreitol and 200 ug/ml 

soybean trypsin inhibitor] with low speed centrifugation between each 

washing step (Costa and Feldman, 1986). A 20% homogenate [w/v] of the 

mucosa was prepared with a polytron (Brinkmann, Des Plaines, XL) in 

buffer containing 600 mM KCl. The homogenate was centrifuged at 

150,000 xg for 20 minutes to obtain cell cytosol. Unoccupied VDR was 

estimated by incubating the cell cytosol with 3.6 nM 1,25-D3 at 4° C for 18 

hours with gently shaking. Receptor bound 1,25-[26,27-3H]D3 was 

determined with hydroxyapatite. Specific binding was obtained by the 

difference between total binding and that observed in the presence of excess 

radio-inert 1,25-D3. Results are expressed in fmoles 1,25-D3 bound/mg 

cytosol protein [ftnole/mg]. 

Plasma 1,25-D3 determination: The method of Reinhardt et al 

(45) was modified to determine 1,25-D3 concentration in plasma (45). 

The plasma 1,25-D3 was chromatographed on C18/0H low hydrocarbon 

columns (Varian, Harbor City, CA), and the concentration determined by 

radio-receptor assay. Recovery of [3H]i,25-D3 was used to estimate 

recovery of 1,25-D3 through the purification steps for each sample. 
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Plasma calcium concentrations were determined by atomic 

absorption spectrophotometry (Perkin-Elmer Corporation. 1965 Analytical 

methods for atomic absorption spectrophotometry. Peikin-Elmer Corp., 

Norwalk, CT). 

Analysis of variance was used to determine if differences among 

CaATPase, CaBP and VDR mRNA levels and plasma constituents existed as 

a result of reproductive state. When ANOVA suggested differences 

existed, Dunnett multiple comparisons test was used to test the significance 

between individual stages of gestation. 

Results 

Intestinal CaATPase mRNA expression in the duodenum from 21-

day pregnant and 7-day lactation rats was increased 2.6- and 3.2-fold 

respectively above that in non-pregnant rats [p<0.01] (Figure 1, 2 and 

Table 1). Intestinal CaBP-9K mRNA expression in the duodenum of 21-

day pregnant and 7-day lactation rats was increased 2.1- and 3.2-fold above 

non-pregnant rats [p<0.05 and 0.01], respectively, for CaBP mRNA 

(Figure 3, 4 and Table 2). Northem blots of CaATPase exhibited a 3-band 

pattem of hybridization with a major band corresponding to 6 kb, which 
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is similar to previous reports (Figure 2) (37). There was no significant 

increase in CaATPase or CaBP mRNA at 7 or 14 days of gestation. 

Intestinal VDR mRNA did not change at any time during the entire period 

of gestation and lactation (Figure 5,6 and Table 3). However, intestinal 

VDR content increased significantly in late pregnancy and lactation 

[p<0.05] (Figure 7 and Table 4). Peak plasma 1,25-D3 elevation was at 21 

days of pregnancy, increasing from the control level of 35.6 pg/ml to 

165.5 pg/ml [p<0.001], and remained high during lactation [p< 0.01] 

(Figure 8 and Table 5). Plasma calcium concentration decreased from 11.2 

mg% in non-pregnant rats to 8.0 mg% in 21-day pregnancy [p< 0.01], and 

remained low at the 7th day of lactation (Figure 9 and Table 6). 

Discussion 

Active transport of calcium across the intestinal epithelial cells is 

dependent on the active metabolite of vitamin D, 1,25- D3 (14, 60, 63). 

The increased concentrations of plasma 1,25-D3 during late pregnancy and 

early lactation allows the dam to adapt to the large calcium demands of the 

fetus and lactation. Other factors such as estrogen may be involved because 

an increase in calcium transport rate in vitamin D-deficient pregnant rats 
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has also been observed (5). However, this increase was significantly lower 

than in vitamin D-repleted pregnant rats (5, 27). The fetus accumulates 

most of its body calcium over the last one third of gestation (21), and loss 

of calcium to milk during lactation represents an even greater calcium 

demand. Increased concentrations of plasma 1,25-D3 during late 

pregnancy and early lactation have been reported in rats and human (28, 

43, 62). Interestingly, pregnancy evidently does not change the circulating 

levels of 1,25- D3 in the sheep (41). Our data indicate a 3- to 4-fold 

increase of plasma 1,25-D3 during late pregnancy and early lactation, 

which is in agreement with earlier reports (28, 43). 

The calcium binding proteins [CaBP-9K], present in mammalian 

intestine, and CaBP-28K, in mammalian kidney, avian kidney and intestine 

are the most extensively studied products of genes affected by 1,25-D3 (4, 

11,16, 24, 31, 51, 54). The induction of these gene products generally 

coincides with increased calcium transport (25, 59). The rat placental 

CaBP-9K was reported to be upregulated during late pregnancy (21). 

Previous reports have suggested that intestinal CaBP-9K mRNA was 

upregulated only in early lactation and not in pregnancy (30). CaATPase 

extmdes calcium from the basolateral membrane of intestinal cells to the 
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extracellular fluids (9, 48). At least four genes have been found to code 

for plasma membrane CaATPase (9, 29). These isoforms of plasma 

membrane CaATPase [PMCA] include PMCAl, PMCA2, PMCA3 and 

PMCA4. All four isoforms of PMCA and their mRNAs have been 

identified in rats (23, 29, 49). PMCAl mRNA was expressed in virtually 

aU tissues, whereas other isoforms of PMCA were tissue-specific (23). In 

rat and human intestine, PMCAl is the predominant CaATPase isoform 

(23, 29) and is regulated by vitamin D (54, 63). A rat placental CaATPase 

mRNA was also shown to be upregulated during late pregnancy and early 

lactation (21); but little is known of changes in rat intestinal CaATPase 

mRNA expression during late pregnancy and early lactation. 

Interestingly, our results indicated that VDR mRNA did not change 

during pregnancy and lactation. However, unoccupied VDR number 

nearly doubled during late pregnancy and lactation. This suggested that the 

effects of pregnancy and lactation on VDR appears to change VDR 

metabolism by post transcriptional and nongenomic mechanisms that are 

consistent with reports of prolongation of the half life of the receptor in 

the occupied state (1, 50). 

Our studies demonstrate a 2-3 fold increase in both vitamin D-
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dependent intestinal CaATPase and CaBP-9K mRNA in 21-day pregnant 

and 7-day lactation rats. The increased expression of calcium ATPase and 

calcium binding protein mRNA implies that active transport systems of 

calcium in the intestine are activated when a sudden, large amount of 

calcium is required, such as during late pregnancy when the fetus 

accumulates calcium in bones and other soft tissues and early lactation of 

animals when large amounts of calcium are "lost" in milk. CaBP and 

CaATPase activities may be enhanced to compensate for physiological 

losses of large amount of calcium during late pregnancy and early 

lactation. 
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Appendix with mean data tables 
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Figure 3. Intestinal CaBP mRNA expression 

in pregnancy and lactation 
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Figure 4. Northern blot of intesrinal CaBP mRNA 
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Figure 5. Intestinal VDR mRNA expression 

in pregnancy and lactation 
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Figure 6. Northern blot of intestinal VDR mRNA 
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Rgure 7. Tntesrinal VDR number in pregnancy and lactation 
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Figure 8. Plasma 1,25-03 concentration in pregnancy and lactation 
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Hgure 9. Plasma concentration in pregnancy and lactation 
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Table 1. Intestinal CaATPase mRNA [relative value] 

Days ralative to parturition Mean SD 

-21 1.00 0 

-14 1.03 0.37 

-7 1.72 0.45 

0 2.39* 0.67 

7 3.21** 0.75 

* p<0.05 compared to control group 

** p<0.01 compared to control group 

Each group contains 4 rat samples. 
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Table 2. Intestinal CaBP mRNA [relative value] 

Days ralative to parturition Mean SD 

-21 1.00 0 

-14 0.91 0.25 

-7 1.38 0.25 

0 2.11** 0.47 

7 3.21** 1.03 

* p<0.05 compared to control group 

** p<0.01 compared to control group 

Each group contains 4 rat samples. 
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Table 3. Intestinal VDR mRNA [relative value] 

Days ralative to parturition Mean SD 

-21 1.00 0 

-14 1.12 0.30 

-7 1.10 0.46 

0 1.18 0.37 

7 1.15 0.28 

* p<0.05 compared to control group 

** p<0.01 compared to control group 

Each group contains 4 rat samples. 
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Table 4. Intestinal VDR number 

[fmol/mg of protein] 

Days ralative to parturition Mean SD 

-21 343 57 

-2 610* 30 

14 645* 32 

* p<0.05 compared to control group 

** p<0.01 compared to control group 

Each group contains 4 rat samples. 
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Table 5. Plasma 1,25-D3 concentration [pg/ml] 

Days ralative to parturition Mean SD 

-21 35.6 14.1 

-14 30.9 11.6 

-7 29.8 11.8 

0 165.5*** 30.8 

7 103.8** 38.4 

* p<0.05 compared to control group 

** p<0.01 compared to control group 

*** p<0.001 compared to control group 

Each group contains 4 rat samples. 
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Table 6. Plasma calciimi concentration [mg/dl] 

Days ralative to parturition Mean SD 

-21 11.2 1.0 

-14 10.0 0.9 

-7 10.8 0.4 

0 8.0* 1.6 

7 8.9 1.7 

* p<0.05 compared to control group 

** p<0.01 compared to control group 

Each group contains 4 rat samples. 
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GENERAL CONCLUSIONS 

1. Administration of 1,25-D3 to vitamin D-deficient rats yielded a 

time-dependent upregulation of intestinal CaATPase and CaBP mRNA. We 

conclude that vitamin D is a major regulator of intestinal calcium 

transporting factors. 

2. Large doses of 1,25,28-D2 may induce CaATPase and CaBP 

mRNA. The results indicate that larger doses of 1,25-D3 analog, 1,25,28-

D2, can also enhance transcriptional regulation of CaATPase and CaBP. 

3. Vitamin D-deficiency downregulates CaATPase and CaBP mRNA. 

Calcium deficiency did not induce transcriptional upregulation of 

CaATPase and CaBP in our experiments. We suggest that vitamin D, not 

calcium, is a major transcriptional regulator of CaATPase and CaBP. 

4. Pregnancy and lactation stimulate intestinal CaATPase and CaBP 

expression, implying the active transport systems are activated during late 

pregnancy and early lactation of animals. 

5. Intestinal VDR mRNA did not increase during late pregnancy and 

early lactation. However, intestinal VDR numbers increase significantly. 

This observation suggests post transcriptional regulation of VDR. 
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